Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Basic Res Cardiol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724619

RESUMEN

Succinate accumulates during myocardial ischemia and is rapidly oxidized during reperfusion, leading to reactive oxygen species (ROS) production through reverse electron transfer (RET) from mitochondrial complex II to complex I, and favoring cell death. Given that connexin 43 (Cx43) modulates mitochondrial ROS production, we investigated whether Cx43 influences RET using inducible knock-out Cx43Cre-ER(T)/fl mice. Oxygen consumption, ROS production, membrane potential and coenzyme Q (CoQ) pool were analyzed in subsarcolemmal (SSM, expressing Cx43) and interfibrillar (IFM) cardiac mitochondria isolated from wild-type Cx43fl/fl mice and Cx43Cre-ER(T)/fl knock-out animals treated with 4-hydroxytamoxifen (4OHT). In addition, infarct size was assessed in isolated hearts from these animals submitted to ischemia-reperfusion (IR), and treated or not with malonate, a complex II inhibitor attenuating RET. Succinate-dependent ROS production and RET were significantly lower in SSM, but not IFM, from Cx43-deficient animals. Mitochondrial membrane potential, a RET driver, was similar between groups, whereas CoQ pool (2.165 ± 0.338 vs. 4.18 ± 0.55 nmol/mg protein, p < 0.05) and its reduction state were significantly lower in Cx43-deficient animals. Isolated hearts from Cx43Cre-ER(T)/fl mice treated with 4OHT had a smaller infarct size after IR compared to Cx43fl/fl, despite similar concentration of succinate at the end of ischemia, and no additional protection by malonate. Cx43 deficiency attenuates ROS production by RET in SSM, but not IFM, and was associated with a decrease in CoQ levels and a change in its redox state. These results may partially explain the reduced infarct size observed in these animals and their lack of protection by malonate.

2.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673951

RESUMEN

Succinate dehydrogenase inhibition with malonate during initial reperfusion reduces myocardial infarct size in both isolated mouse hearts subjected to global ischemia and in in situ pig hearts subjected to transient coronary ligature. However, the long-term effects of acute malonate treatment are unknown. Here, we investigated whether the protective effects of succinate dehydrogenase inhibition extend to a reduction in scar size and adverse left ventricular remodeling 28 days after myocardial infarction. Initially, ten wild-type mice were subjected to 45 min of left anterior descending coronary artery (LAD) occlusion, followed by 24 h of reperfusion, and were infused during the first 15 min of reperfusion with saline with or without disodium malonate (10 mg/kg/min, 120 µL/kg/min). Malonate-treated mice depicted a significant reduction in infarct size (15.47 ± 3.40% of area at risk vs. 29.34 ± 4.44% in control animals, p < 0.05), assessed using triphenyltetrazolium chloride. Additional animals were then subjected to a 45 min LAD ligature, followed by 28 days of reperfusion. Treatment with a single dose of malonate during the first 15 min of reperfusion induced a significant reduction in scar area, measured using Picrosirius Red staining (11.94 ± 1.70% of left ventricular area (n = 5) vs. 23.25 ± 2.67% (n = 9), p < 0.05), an effect associated with improved ejection fraction 28 days after infarction, as determined using echocardiography, and an attenuated enhancement in expression of the pro-inflammatory and fibrotic markers NF-κB and Smad2/3 in remote myocardium. In conclusion, a reversible inhibition of succinate dehydrogenase with a single dose of malonate at the onset of reperfusion has long-term protective effects in mice subjected to transient coronary occlusion.


Asunto(s)
Malonatos , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Succinato Deshidrogenasa , Remodelación Ventricular , Animales , Malonatos/farmacología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Ratones , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Masculino , Remodelación Ventricular/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Cicatriz/patología , Cicatriz/tratamiento farmacológico , Ratones Endogámicos C57BL
3.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338818

RESUMEN

TRPV4 channels, which respond to mechanical activation by permeating Ca2+ into the cell, may play a pivotal role in cardiac remodeling during cardiac overload. Our study aimed to investigate TRPV4 involvement in pathological and physiological remodeling through Ca2+-dependent signaling. TRPV4 expression was assessed in heart failure (HF) models, induced by isoproterenol infusion or transverse aortic constriction, and in exercise-induced adaptive remodeling models. The impact of genetic TRPV4 inhibition on HF was studied by echocardiography, histology, gene and protein analysis, arrhythmia inducibility, Ca2+ dynamics, calcineurin (CN) activity, and NFAT nuclear translocation. TRPV4 expression exclusively increased in HF models, strongly correlating with fibrosis. Isoproterenol-administered transgenic TRPV4-/- mice did not exhibit HF features. Cardiac fibroblasts (CFb) from TRPV4+/+ animals, compared to TRPV4-/-, displayed significant TRPV4 overexpression, elevated Ca2+ influx, and enhanced CN/NFATc3 pathway activation. TRPC6 expression paralleled that of TRPV4 in all models, with no increase in TRPV4-/- mice. In cultured CFb, the activation of TRPV4 by GSK1016790A increased TRPC6 expression, which led to enhanced CN/NFATc3 activation through synergistic action of both channels. In conclusion, TRPV4 channels contribute to pathological remodeling by promoting fibrosis and inducing TRPC6 upregulation through the activation of Ca2+-dependent CN/NFATc3 signaling. These results pose TRPV4 as a primary mediator of the pathological response.


Asunto(s)
Calcineurina , Insuficiencia Cardíaca , Canales Catiónicos TRPV , Remodelación Ventricular , Animales , Ratones , Calcineurina/metabolismo , Células Cultivadas , Fibrosis , Insuficiencia Cardíaca/metabolismo , Isoproterenol , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Remodelación Ventricular/genética
4.
Crit Care ; 27(1): 374, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773186

RESUMEN

BACKGROUND AND AIMS: The triggering factors of sepsis-induced myocardial dysfunction (SIMD) are poorly understood and are not addressed by current treatments. S100A8/A9 is a pro-inflammatory alarmin abundantly secreted by activated neutrophils during infection and inflammation. We investigated the efficacy of S100A8/A9 blockade as a potential new treatment in SIMD. METHODS: The relationship between plasma S100A8/A9 and cardiac dysfunction was assessed in a cohort of 62 patients with severe sepsis admitted to the intensive care unit of Linköping University Hospital, Sweden. We used S100A8/A9 blockade with the small-molecule inhibitor ABR-238901 and S100A9-/- mice for therapeutic and mechanistic studies on endotoxemia-induced cardiac dysfunction in mice. RESULTS: In sepsis patients, elevated plasma S100A8/A9 was associated with left-ventricular (LV) systolic dysfunction and increased SOFA score. In wild-type mice, 5 mg/kg of bacterial lipopolysaccharide (LPS) induced rapid plasma S100A8/A9 increase and acute LV dysfunction. Two ABR-238901 doses (30 mg/kg) administered intraperitoneally with a 6 h interval, starting directly after LPS or at a later time-point when LV dysfunction is fully established, efficiently prevented and reversed the phenotype, respectively. In contrast, dexamethasone did not improve cardiac function compared to PBS-treated endotoxemic controls. S100A8/A9 inhibition potently reduced systemic levels of inflammatory mediators, prevented upregulation of inflammatory genes and restored mitochondrial function in the myocardium. The S100A9-/- mice were protected against LPS-induced LV dysfunction to an extent comparable with pharmacologic S100A8/A9 blockade. The ABR-238901 treatment did not induce an additional improvement of LV function in the S100A9-/- mice, confirming target specificity. CONCLUSION: Elevated S100A8/A9 is associated with the development of LV dysfunction in severe sepsis patients and in a mouse model of endotoxemia. Pharmacological blockade of S100A8/A9 with ABR-238901 has potent anti-inflammatory effects, mitigates myocardial dysfunction and might represent a novel therapeutic strategy for patients with severe sepsis.


Asunto(s)
Endotoxemia , Cardiopatías , Disfunción Ventricular Izquierda , Humanos , Ratones , Animales , Endotoxemia/complicaciones , Endotoxemia/tratamiento farmacológico , Lipopolisacáridos , Calgranulina A/fisiología , Calgranulina B/genética , Miocardio , Inflamación/tratamiento farmacológico
5.
Biomed Pharmacother ; 167: 115469, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37729730

RESUMEN

Extracellular matrix (ECM) is an active player in cardiovascular calcification (CVC), a major public health issue with an unmet need for effective therapies. Lysyl oxidase (LOX) conditions ECM biomechanical properties; thus, we hypothesized that LOX might impact on mineral deposition in calcific aortic valve disease (CAVD) and atherosclerosis. LOX was upregulated in calcified valves from two cohorts of CAVD patients. Strong LOX immunostaining was detected surrounding calcified foci in calcified human valves and atherosclerotic lesions colocalizing with RUNX2 on valvular interstitial cells (VICs) or vascular smooth muscle cells (VSMCs). Both LOX secretion and organized collagen deposition were enhanced in calcifying VICs exposed to osteogenic media. ß-aminopropionitrile (BAPN), an inhibitor of LOX, attenuated collagen deposition and calcification. VICs seeded onto decellularized matrices from BAPN-treated VICs calcified less than cells cultured onto control scaffolds; instead, VICs exposed to conditioned media from cells over-expressing LOX or cultured onto LOX-crosslinked matrices calcified more. Atherosclerosis was induced in WT and transgenic mice that overexpress LOX in VSMC (TgLOXVSMC) by AAV-PCSK9D374Y injection and high-fat feeding. In atherosclerosis-challenged TgLOXVSMC mice both atherosclerosis burden and calcification assessed by near-infrared fluorescence (NIRF) imaging were higher than in WT mice. These animals also exhibited larger calcified areas in atherosclerotic lesions from aortic arches and brachiocephalic arteries. Moreover, LOX transgenesis exacerbated plaque inflammation, and increased VSMC cellularity, the rate of RUNX2-positive cells and both connective tissue content and collagen cross-linking. Our findings highlight the relevance of LOX in CVC and postulate this enzyme as a potential therapeutic target for CVC.

7.
Sci Rep ; 13(1): 6907, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106099

RESUMEN

Succinate is enhanced during initial reperfusion in blood from the coronary sinus in ST-segment elevation myocardial infarction (STEMI) patients and in pigs submitted to transient coronary occlusion. Succinate levels might have a prognostic value, as they may correlate with edema volume or myocardial infarct size. However, blood from the coronary sinus is not routinely obtained in the CathLab. As succinate might be also increased in peripheral blood, we aimed to investigate whether peripheral plasma concentrations of succinate and other metabolites obtained during coronary revascularization correlate with edema volume or infarct size in STEMI patients. Plasma samples were obtained from peripheral blood within the first 10 min of revascularization in 102 STEMI patients included in the COMBAT-MI trial (initial TIMI 1) and from 9 additional patients with restituted coronary blood flow (TIMI 2). Metabolite concentrations were analyzed by 1H-NMR. Succinate concentration averaged 0.069 ± 0.0073 mmol/L in patients with TIMI flow ≤ 1 and was significantly increased in those with TIMI 2 at admission (0.141 ± 0.058 mmol/L, p < 0.05). However, regression analysis did not detect any significant correlation between most metabolite concentrations and infarct size, extent of edema or other cardiac magnetic resonance (CMR) variables. In conclusion, spontaneous reperfusion in TIMI 2 patients associates with enhanced succinate levels in peripheral blood, suggesting that succinate release increases overtime following reperfusion. However, early plasma levels of succinate and other metabolites obtained from peripheral blood does not correlate with the degree of irreversible injury or area at risk in STEMI patients, and cannot be considered as predictors of CMR variables.Trial registration: Registered at www.clinicaltrials.gov (NCT02404376) on 31/03/2015. EudraCT number: 2015-001000-58.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Animales , Imagen por Resonancia Magnética , Infarto del Miocardio/patología , Reperfusión , Ácido Succínico , Porcinos , Resultado del Tratamiento
8.
Rev Esp Cardiol ; 75(12): 1050-1058, 2022 Dec.
Artículo en Español | MEDLINE | ID: mdl-36570815

RESUMEN

The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.

9.
iScience ; 25(10): 105128, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185381

RESUMEN

Adrenoceptors are G protein-coupled receptors involved in a large variety of physiological processes, also under pathological conditions. This is due in large part to their ubiquitous expression in the body exerting numerous essential functions. Therefore, the possibility to control their activity with high spatial and temporal precision would constitute a valuable research tool. In this study, we present a caged version of the approved non-selective ß-adrenoceptor antagonist carvedilol, synthesized by alkylation of its secondary amine with a coumarin derivative. Introducing this photo-removable group abolished carvedilol physiological effects in cell cultures, mouse isolated perfused hearts and living zebrafish larvae. Only after visible light application, carvedilol was released and the different physiological systems were pharmacologically modulated in a similar manner as the control drug. This research provides a new photopharmacological tool for a wide range of research applications that may help in the development of future precise therapies.

10.
Rev Esp Cardiol (Engl Ed) ; 75(12): 1050-1058, 2022 Dec.
Artículo en Inglés, Español | MEDLINE | ID: mdl-35931285

RESUMEN

The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Contaminantes Ambientales , Infarto del Miocardio , Humanos , Estados Unidos , Terapia por Quelación/efectos adversos , Terapia por Quelación/métodos , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Quelantes/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Metales , Infarto del Miocardio/complicaciones
11.
Aging Cell ; 21(3): e13564, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35233924

RESUMEN

Aged cardiomyocytes develop a mismatch between energy demand and supply, the severity of which determines the onset of heart failure, and become prone to undergo cell death. The FoF1-ATP synthase is the molecular machine that provides >90% of the ATP consumed by healthy cardiomyocytes and is proposed to form the mitochondrial permeability transition pore (mPTP), an energy-dissipating channel involved in cell death. We investigated whether aging alters FoF1-ATP synthase self-assembly, a fundamental biological process involved in mitochondrial cristae morphology and energy efficiency, and the functional consequences this may have. Purified heart mitochondria and cardiomyocytes from aging mice displayed an impaired dimerization of FoF1-ATP synthase (blue native and proximity ligation assay), associated with abnormal mitochondrial cristae tip curvature (TEM). Defective dimerization did not modify the in vitro hydrolase activity of FoF1-ATP synthase but reduced the efficiency of oxidative phosphorylation in intact mitochondria (in which membrane architecture plays a fundamental role) and increased cardiomyocytes' susceptibility to undergo energy collapse by mPTP. High throughput proteomics and fluorescence immunolabeling identified glycation of 5 subunits of FoF1-ATP synthase as the causative mechanism of the altered dimerization. In vitro induction of FoF1-ATP synthase glycation in H9c2 myoblasts recapitulated the age-related defective FoF1-ATP synthase assembly, reduced the relative contribution of oxidative phosphorylation to cell energy metabolism, and increased mPTP susceptibility. These results identify altered dimerization of FoF1-ATP synthase secondary to enzyme glycation as a novel pathophysiological mechanism involved in mitochondrial cristae remodeling, energy deficiency, and increased vulnerability of cardiomyocytes to undergo mitochondrial failure during aging.


Asunto(s)
Envejecimiento , Mitocondrias Cardíacas , ATPasas de Translocación de Protón Mitocondriales , Miocitos Cardíacos , Adenosina Trifosfato/metabolismo , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Calcio/metabolismo , Dimerización , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo , Ratones , Mitocondrias Cardíacas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo
12.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768801

RESUMEN

The mechanisms committed in the activation and response of vascular and inflammatory immune cells play a major role in tissue remodeling in cardiovascular diseases (CVDs) such as atherosclerosis, pulmonary arterial hypertension, and abdominal aortic aneurysm. Cardiovascular remodeling entails interrelated cellular processes (proliferation, survival/apoptosis, inflammation, extracellular matrix (ECM) synthesis/degradation, redox homeostasis, etc.) coordinately regulated by a reduced number of transcription factors. Nuclear receptors of the subfamily 4 group A (NR4A) have recently emerged as key master genes in multiple cellular processes and vital functions of different organs, and have been involved in a variety of high-incidence human pathologies including atherosclerosis and other CVDs. This paper reviews the major findings involving NR4A3 (Neuron-derived Orphan Receptor 1, NOR-1) in the cardiovascular remodeling operating in these diseases.


Asunto(s)
Enfermedades Cardiovasculares/patología , Sistema Cardiovascular/patología , Proteínas de Unión al ADN/metabolismo , Inflamación , Proteínas del Tejido Nervioso/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Animales , Aterosclerosis , Remodelación Atrial , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Proteínas de Unión al ADN/fisiología , Humanos , Proteínas del Tejido Nervioso/fisiología , Hipertensión Arterial Pulmonar , Receptores de Esteroides/fisiología , Receptores de Hormona Tiroidea/fisiología
13.
JACC Basic Transl Sci ; 6(7): 567-580, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34368505

RESUMEN

In patients with a first anterior ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention, iron deficiency (ID) was associated with larger infarcts, more extensive microvascular obstruction, and higher frequency of adverse left ventricular remodeling as assessed by cardiac magnetic resonance imaging. In mice, an ID diet reduced the activity of the endothelial nitric oxide synthase/soluble guanylate cyclase/protein kinase G pathway in association with oxidative/nitrosative stress and increased infarct size after transient coronary occlusion. Iron supplementation or administration of an sGC activator before ischemia prevented the effects of the ID diet in mice. Not only iron excess, but also ID, may have deleterious effects in the setting of ischemia and reperfusion.

14.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922534

RESUMEN

Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.


Asunto(s)
Conexinas/metabolismo , Cardiopatías/fisiopatología , Animales , Cardiopatías/metabolismo , Humanos
15.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923786

RESUMEN

Succinate dehydrogenase (SDH) inhibition with malonate during reperfusion reduced myocardial infarction in animals, whereas its endogenous substrate, succinate, is detected in plasma from STEMI patients. We investigated whether protection by SDH inhibition is additive to that of remote ischemic perconditioning (RIC) in pigs submitted to transient coronary artery occlusion, and whether protective maneuvers influence plasma levels of citric acid cycle metabolites. Forty pigs were submitted to 40 min coronary occlusion and reperfusion, and allocated to four groups (controls, sodium malonate 10 mmol/L, RIC, and malonate + RIC). Plasma was obtained from femoral and great cardiac veins and analyzed by LC-MS/MS. Malonate, RIC, and malonate + RIC reduced infarct size (24.67 ± 5.98, 25.29 ± 3.92 and 29.83 ± 4.62% vs. 46.47 ± 4.49% in controls, p < 0.05), but no additive effects were detected. Enhanced concentrations of succinate, fumarate, malate and citrate were observed in controls during initial reperfusion in the great cardiac vein, and most were reduced by cardioprotective maneuvers. Concentrations of succinate, fumarate, and malate significantly correlated with infarct size. In conclusion, despite the combination of SDH inhibition during reperfusion and RIC did not result in additive protection, plasma concentrations of selected citric acid cycle metabolites are attenuated by protective maneuvers, correlate with irreversible injury, and might become a prognosis tool in STEMI patients.


Asunto(s)
Ciclo del Ácido Cítrico , Oclusión Coronaria/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Precondicionamiento Isquémico/métodos , Infarto del Miocardio/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Oclusión Coronaria/patología , Oclusión Coronaria/terapia , Ácidos Dicarboxílicos/sangre , Ácidos Dicarboxílicos/metabolismo , Inhibidores Enzimáticos/farmacología , Corazón/efectos de los fármacos , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocardio/metabolismo , Porcinos
16.
Free Radic Biol Med ; 169: 397-409, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33892116

RESUMEN

A well-balanced intercellular communication between the different cells within the heart is vital for the maintenance of cardiac homeostasis and function. Despite remarkable advances on disease management and treatment, acute myocardial infarction remains the major cause of morbidity and mortality worldwide. Gold standard reperfusion strategies, namely primary percutaneous coronary intervention, are crucial to preserve heart function. However, reestablishment of blood flow and oxygen levels to the infarcted area are also associated with an accumulation of reactive oxygen species (ROS), leading to oxidative damage and cardiomyocyte death, a phenomenon termed myocardial reperfusion injury. In addition, ROS signaling has been demonstrated to regulate multiple biological pathways, including cell differentiation and intercellular communication. Given the importance of cell-cell crosstalk in the coordinated response after cell injury, in this review, we will discuss the impact of ROS in the different forms of inter- and intracellular communication, as well as the role of gap junctions, tunneling nanotubes and extracellular vesicles in the propagation of oxidative damage in cardiac diseases, particularly in the context of ischemia/reperfusion injury.


Asunto(s)
Daño por Reperfusión Miocárdica , Uniones Comunicantes , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
17.
Basic Res Cardiol ; 116(1): 4, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495853

RESUMEN

Remote ischemic conditioning (RIC) and the GLP-1 analog exenatide activate different cardioprotective pathways and may have additive effects on infarct size (IS). Here, we aimed to assess the efficacy of RIC as compared with sham procedure, and of exenatide, as compared with placebo, and the interaction between both, to reduce IS in humans. We designed a two-by-two factorial, randomized controlled, blinded, multicenter, clinical trial. Patients with ST-segment elevation myocardial infarction receiving primary percutaneous coronary intervention (PPCI) within 6 h of symptoms were randomized to RIC or sham procedure and exenatide or matching placebo. The primary outcome was IS measured by late gadolinium enhancement in cardiac magnetic resonance performed 3-7 days after PPCI. The secondary outcomes were myocardial salvage index, transmurality index, left ventricular ejection fraction and relative microvascular obstruction volume. A total of 378 patients were randomly allocated, and after applying exclusion criteria, 222 patients were available for analysis. There were no significant interactions between the two randomization factors on the primary or secondary outcomes. IS was similar between groups for the RIC (24 ± 11.8% in the RIC group vs 23.7 ± 10.9% in the sham group, P = 0.827) and the exenatide hypotheses (25.1 ± 11.5% in the exenatide group vs 22.5 ± 10.9% in the placebo group, P = 0.092). There were no effects with either RIC or exenatide on the secondary outcomes. Unexpected adverse events or side effects of RIC and exenatide were not observed. In conclusion, neither RIC nor exenatide, or its combination, were able to reduce IS in STEMI patients when administered as an adjunct to PPCI.


Asunto(s)
Brazo/irrigación sanguínea , Exenatida/uso terapéutico , Incretinas/uso terapéutico , Precondicionamiento Isquémico , Miocardio/patología , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST/terapia , Anciano , Terapia Combinada , Método Doble Ciego , Exenatida/efectos adversos , Femenino , Humanos , Incretinas/efectos adversos , Imagen por Resonancia Cinemagnética , Masculino , Persona de Mediana Edad , Intervención Coronaria Percutánea/efectos adversos , Estudios Prospectivos , Flujo Sanguíneo Regional , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/patología , Infarto del Miocardio con Elevación del ST/fisiopatología , España , Factores de Tiempo , Resultado del Tratamiento , Función Ventricular Izquierda
19.
Antioxidants (Basel) ; 11(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35052579

RESUMEN

Lysyl oxidase (LOX) is an enzyme critically involved in collagen maturation, whose activity releases H2O2 as a by-product. Previous studies demonstrated that LOX over-expression enhances reactive oxygen species (ROS) production and exacerbates cardiac remodeling induced by pressure overload. However, whether LOX influences acute myocardial infarction and post-infarct left ventricular remodeling and the contribution of LOX to myocardial oxidative stress following ischemia-reperfusion have not been analyzed. Isolated hearts from transgenic mice over-expressing human LOX in the heart (TgLOX) and wild-type (WT) littermates were subjected to global ischemia and reperfusion. Although under basal conditions LOX transgenesis is associated with higher cardiac superoxide levels than WT mice, no differences in ROS production were detected in ischemic hearts and a comparable acute ischemia-reperfusion injury was observed (infarct size: 56.24 ± 9.44 vs. 48.63 ± 2.99% of cardiac weight in WT and TgLOX, respectively). Further, similar changes in cardiac dimensions and function were observed in TgLOX and WT mice 28 days after myocardial infarction induced by transient left anterior descending (LAD) coronary artery occlusion, and no differences in scar area were detected (20.29 ± 3.10 vs. 21.83 ± 2.83% of left ventricle). Our data evidence that, although LOX transgenesis induces baseline myocardial oxidative stress, neither ROS production, infarct size, nor post-infarction cardiac remodeling were exacerbated following myocardial ischemia-reperfusion.

20.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35008601

RESUMEN

Information about heart failure with reduced ejection fraction (HFrEF) in women and the potential effects of aging in the female heart is scarce. We investigated the vulnerability to develop HFrEF in female elderly mice compared to young animals, as well as potential differences in reverse remodeling. First, HF was induced by isoproterenol infusion (30 mg/kg/day, 28 days) in young (10-week-old) and elderly (22-month-old) female mice. In a second set of animals, mice underwent isoproterenol infusion followed by no treatment during 28 additional days. Cardiac remodeling was assessed by echocardiography, histology and gene expression of collagen-I and collagen-III. Following isoproterenol infusion, elderly mice developed similar HFrEF features compared to young animals, except for greater cell hypertrophy and tissue fibrosis. After beta-adrenergic withdrawal, young female mice experienced complete reversal of the HFrEF phenotype. Conversely, reversed remodeling was impaired in elderly animals, with no significant recovery of LV ejection fraction, cardiomyocyte hypertrophy and collagen deposition. In conclusion, chronic isoproterenol infusion is a valid HF model for elderly and young female mice and induces a similar HF phenotype in both. Elderly animals, unlike young, show impaired reverse remodeling, with persistent tissue fibrosis and cardiac dysfunction even after beta-adrenergic withdrawal.


Asunto(s)
Envejecimiento , Modelos Animales de Enfermedad , Fibrosis , Insuficiencia Cardíaca/inducido químicamente , Isoproterenol/toxicidad , Animales , Cardiomiopatías , Colágeno/genética , Femenino , Regulación de la Expresión Génica , Insuficiencia Cardíaca/fisiopatología , Ratones , Ratones Endogámicos C57BL , Volumen Sistólico , Función Ventricular Izquierda , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA